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This paper introduces a method of populating unstructured grids using sequential Gaussian 
simulation.  The use of unstructured grids is becoming more popular, especially with the 
petroleum industry.  The shift to unstructured grids is happening even before we have proven 
methods for populating them.  Current methods for populating these grids include the following: 
(1) sequential Gaussian simulation on a high resolution point scale grid followed by block 
averaging; (2) sequential Gaussian simulation of block centroid locations at point scale; and (3) 
other techniques not necessarily involving kriging.  The method proposed here is similar to 
method one, except that the refined point scale grid is generated by locally refining each 
unstructured volume.  The result is an unstructured grid of points to be simulated and block 
averaged to the correct volumes.  The level of refinement is block-dependent providing for very 
efficient simulation. 

Introduction 

Simulation on unstructured grids is a pressing topic in geostatistical research.  Many issues arise 
when moving away from a regular grid including complex block geometry, calculation of average 
covariance values between blocks, and non-linearity of the normal score transform resulting in 
incorrect averages.  Most current geostatistical simulation algorithms are point simulation based, 
which would not account for the different block volume support, or they employ average 
covariance calculations in Gaussian units, which retains the problem of averaging non-linearly 
transformed data. 

The sequential Gaussian simulation algorithm (sgsim) within GSLIB (Deutsch and Journel, 1998) 
performs point based simulation, which is to be used for populating unstructured grids.  Sgsim 
was extended to perform a locally refined point scale simulation within blocks of various support 
volumes.  This method avoids the need to calculate average covariance values and also never 
averages information in Gaussian units.  Averaging is done after back-transformation to original 
units which accounts for the volume of each block. 

Development of the new program, called usgsim, has progressed to provide single variable 
simulation.  Multivariate capabilities are currently being added including collocated cokriging 
under a Markov assumption, generalized cokriging for numerous primary variables, and the 
ability to simulate multiple variables simultaneously.  For a more complete algorithm, other 
geologic features will have to be considered including facies, stratigraphy and faults. 

Parameters and Program Flow 

Extending sgsim to populate unstructured grids requires a specification for these grids.  A new 
unstructured grid specification was developed to provide flexibility in defining grids for various 
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geologic resources.  An Interim Format and Tools to Visualize Unstructured Grids provides an 
explanation of this grid specification and is available in this CCG report.  For the single variable 
simulation version of usgsim, program flow includes two additional steps to the conventional 
sgsim. 

1. Read in all conditioning data 

2. Normal score transform the data 

3. Read in the unstructured grid definition 

4. Refine each grid block into a set of point-scale locations 

5. Choose a random path through the point-set 

6. For each point-scale location 

a. Search for nearby conditioning and previously simulated nodes using the 
super-block search strategy 

b. Setup and solve the kriging system of equations for a conditional mean, 
m and variance, σ 

c. Randomly draw a uniformly distributed value, q, in (0,1) 

d. Calculate y as the inverse standard normal distribution with q as the 
quantile: 1( )y G q−=  

e. Assign the simulated value: z y mσ= ⋅ +  

7. Back-transform simulated values 

8. Average the point-set and assign values to the unstructured grid blocks. 

Steps that are new or different than those found in sgsim are 3, 4, 6.a and 6.b.  Step 3 required a 
new file parsing routine.  Essentially, grid components including corner-points, lines, faces and 
cells are input and assembled into various data structures.  Cells are defined using constructive 
geometry.  Each cell is composed of a set of faces, each face consists of a set of line segments 
forming a boundary, and each line segment is defined by two endpoints.  This type of 
representation makes calculations for Step 4 possible. 

Refining an unstructured grid cell is a geometric problem.  A cell can be a convex or non-convex 
solid and it can also have curved edges (see Figure 1).  In some cases, a boundary may define a 
face that is a cylindrical shell rather than a plane.  These possibilities make cell refinement 
complex. 

 
Figure 1: A convex cell (left), non-convex cell (center) and cell with a curved face (right). 
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For Step 4, each block is refined into a user specified number of points.  Numbers of refinement 
points to generate in each Cartesian coordinate direction are specified as parameters.  For 2 by 2 
by 2 refinement, eight points would be generated.  For a particular cell, the refinement process 
first generates an initial set of points and then adjusts those points so that they are inside the cell.  
A breakdown of the process is given below, after which each step will be explained. 

1. Calculate the object bounding box (OBB) of a cell 

2. Evenly distribute a set of refinement points throughout the OBB 

3. For each point 

a. Check that it is inside the cell 

b. If it is not inside, redistribute points along the longest axis of the OBB 

4. Save the set of points for simulation 

Step 1: Calculating an object bounding box.  There are two types of bounding boxes: those that 
are aligned to the Cartesian coordinates and those that are aligned to a coordinate system local to 
a particular object.  In this case, the object is any unstructured grid cell.  Determining the local 
axes is accomplished with principal component analysis (PCA).  In statistics, PCA is used for 
explaining the variance-covariance structure of a set of variables with linear combinations of 
those variables (Johnson and Wichern, 2002).  The linear combinations form a set of mutually 
orthogonal vectors: these are the local axis of highest variability for that variable set.  For an 
unstructured grid cell the variable set comes from the x, y and z locations of the set of points 
defining the cell.  The principal components, which are linear combinations of x, y and z, define a 
new orthogonal vector space for the unstructured cell.  The OBB for the middle cell in Figure 1 is 
shown in Figure 2. 

 
Figure 2: Top view of an unstructured grid cell and its OBB. 

Step 2: Generate refinement points.  An initial set of point-scale locations is defined using on-
center regular grid geometry in the OBB coordinate system, which is denoted with x’, y’ and z’.  
We know the number of points to create in each direction, nx, ny, nz, the dimensions of the OBB, 
dx’, dy’, dz’, and the center position of the OBB, cx’, cy’, cz’.  For an index i, j, k, with 
0 , , ', ', 'i j k nx ny nz< ≤ , the points position, px’, py’, pz’, is calculated using Equation 1: 
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Even though the points are generated in the local coordinate system, they can be easily 
transformed to the original or global coordinate system.  The transformation matrix is a 
symmetric matrix that stores each linear combination vector.  In this case, the matrix is 3 by 3.  
Transforming locations from x, y, z space to x’, y’, z’ space is done using this matrix.  Back-
transformation is done using its inverse.  The set of points using 2 by 2 by 2 discretization in the 
global coordinate system is shown in Figure 3. 

 
Figure 3: Initial point set refined using the OBB coordinate system. 

Step 3: Checking and adjusting points.  Checking if a point is inside a potentially non-convex 
polygon involves projections and polygon point containment (PC) tests (Mortenson, 1999).  For a 
particular point, the first step is to calculate all intersections with the cell and the OBB axes with 
the point acting as the origin.  PC-tests can then be done in each direction using the intersections, 
see Figure 4.  If any one of the tests determines that a point is outside, then the point is not in the 
cell. 
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Figure 4: Point containment test for an unstructured grid cell. 

Points that are not inside the cell are translated along the longest OBB axis such that they are 
inside.  For the case where the point, p, is outside in Figure 4, we redistribute all refinement 
points along x’, with p as the origin, to be between the intersection points (see Figure 5).  The 
process of generating point sets when considering curved faces is similar; the difference is in 
calculating intersection points along the OBB axes. 

 
Figure 5: Point adjustment process for points that are outside a cell. 

It was mentioned that the search for nearby conditioning data was different than that for sgsim 
(Step 6.a. from the above list).  A super block search is still utilized; however, we are no longer 
searching for previously simulated nodes that fall in a regular pattern.  The refined point set has 
no structure.  We must search for previously simulated points the same way as with irregularly 
spaced conditioning data.  This slows program execution to some degree.  Execution time is again 
slowed by the difference in Step 6.b.  With regular grids, an efficient covariance lookup table can 
be created.  The distances and orientations of grid nodes relative to one another are constant.  
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This way, covariance can be looked up based on indices.  With irregularly spaced point data, 
covariance values and distances are calculated directly for every pair in the kriging system. 

Adequate Refinement 

Determining a reasonable number of refinement points for a grid cell can be done with a single 
grid block and some synthetic data, see Figure 6.  Refinement points were slowly increased and 
for each number, 100 realizations were generated for the blocks value.  Means and standard 
deviations of the realizations were calculated for each different set of refinement points.  
Fluctuations in these means and standard deviations were compared with the number of 
refinement points used, see Figure 7.  Fluctuations level off with approximately 20 refinement 
points. 

 
Figure 6: A simple block and synthetic conditioning data (large bullets).  A set of refinement 
points and their simulated values is also shown (small bullets). 
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Program Testing 

Testing of usgsim will be done with a small unstructured grid of 35 aerial cells.  The grid has one 
cell in the z-direction.  Thickness of cells was set at 10 units.  A synthetic data set was created as 
well with 18 data points.  One of the tests that will be carried out involves performing sequential 
Gaussian simulation (SGS) on a regular grid and block averaging results to the unstructured grid 
cells.  Conditional mean and variance values of each block can be checked to ensure usgsim is 
producing valid results.  A CPU time comparison can also be done.  This will compare the time it 
takes to simulate on a fine-scale regular grid and block average to the unstructured grid versus the 
time to run usgsim with the unstructured grid directly. 

Establishing a reasonable regular grid depends on the smallest cell in the unstructured grid and 
the number of discretization points to be assigned to each cell.  The resolution of the regular grid 
should be high enough to place that approximate number of discretized points in the smallest 
unstructured cell.  The sample unstructured grid layout and synthetic data are shown in Figure 8. 

 
Figure 8: Sample unstructured grid layout and synthetic data. 

To keep calculations simple and since the unstructured grid is only one cell thick, cells will be 
discretized in the z-plane only.  Regular grids will be kept in two dimensions.  Looking at the 
smallest cell in the grid, a relation can be defined between number of refinement points in the cell 
and required regular grid resolution.  Area of this cell, A, is 23.9502 or approximately 24 units2.  
Since the overall grid is square, regular grid cells will be square as well with side length d.  If the 
number of points to be placed in the smallest unstructured cell is n, the approximate regular grid 
cell size can be defined by Equation 2. 

 
Ad
n

=  (2) 

Since we also know the origin and dimensions of the overall unstructured grid (0,0 and 
100.0,100.0)  the regular grid definition can be generated.  A table of number of refinement points 
and regular grid resolution has been put together in Table 1. 
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Table 1: Regular grid resolution for given refinement points. 

Refinement 
Points, n 

Side 
length, 

d 

number of 
blocks in each 

direction 

Adjusted 
side length 

regular grid 
origin 

total 
cells 

2 3.46 29 3.45 1.72 841 

4 2.45 41 2.44 1.22 1681 

8 1.73 58 1.72 0.86 3364 

16 1.22 82 1.22 0.61 6724 

32 0.87 115 0.87 0.43 13225 

To make sure that the smallest unstructured cell always has some regular grid blocks within 
(based on center point geometry) the number of refinement points will be kept high enough such 
that the side length, d, is at most the smallest dimension of the unstructured cell.  This length is 
1.23 units.  There must be at least 16 (4 by 4) refinement points.  Figure 9 shows two realizations; 
one simulated with usgsim and 16 refinement points and one simulated with sgsim and block 
averaged.  Note that the random path through nodes is different for each method; results will not 
look similar for the same random number seed.  Expected mean and standard deviation values of 
each block can be compared over a set of realizations however. 

 
Figure 9: Simulations using both usgsim and sgsim. 

Figure 10 shows a comparison of the expected mean and standard deviation values of each block 
for 100 realizations calculated from usgsim and from block averaged sgsim runs.  A slight bias 
can be seen in both plots as the points fall below the line.  This implies that the mean and 
standard deviation is higher for usgsim. 
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Figure 10: E-type mean (left) and standard deviation (right) comparison charts for usgsim and 
sgsim. 

Another comparison is regarding memory.  When using 16 refinement points, the total file size 
for usgsim, which output simulated values at refinement point locations and for grid blocks, is 2.3 
MB whereas for sgsim the file size is 10.5 MB.  Keep in mind this is only for a 35 cell 
unstructured grid.  For this particular grid setup, runtime for both programs was identical.  
Runtimes for sgsim would increase beyond those of usgsim if the smallest unstructured cell were 
½ or a ¼ the size of that used.  In this case, regular grid resolution would be 1.41 or 2 times finer 
than indicated in Table 1. 

Model Checking 

Some of the standard procedures for validating models generated with sequential Gaussian 
simulation include histogram reproduction and variogram reproduction.  These are 
straightforward for regular grids.  The area of interest is simulated at equally spaced intervals 
with identical volume support.  Even if the support volume is different than that of the input data, 
the histogram and variogram can be scaled appropriately using affine correction or the discrete 
Gaussian model.  With unstructured grids, the support volume of cells is not constant.  Histogram 
reproduction cannot be checked easily.  Checking the histogram with the refined set of points is 
not correct either.  The points are not distributed evenly over the area of interest.  Declustering of 
the refined point set may be one possible way to check histogram reproduction. 

The same problems persist for variogram reproduction.  Variograms would have to be calculated 
over the refined point set.  Calculating variograms over irregularly spaced data can be very time 
consuming, especially when the refined point set becomes vary large, possibly in the millions for 
large grids. 

Future Work 

More work is planned for improving the algorithm for Gaussian simulation on unstructured grids.  
Currently, only one variable can be simulated.  This is going to be expanded to cover multivariate 
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simulation.  Multiple input variables will be accepted and any number of them can be simulated.  
Multiple inputs will be available for non-collocated data, in which case a linear model of 
coregionalization must be provided, or for collocated variables under a Markov assumption 
(Chiles and Delfiner, 1999).  Simulation of multiple variables is accomplished with simultaneous 
kriging where multiple kriging weight vectors are solved for in a system of linear equations 
involving multiple right-hand-side vectors. 

Work regarding incorporation of other geologic features such as stratigraphy and faults into 
simulation is also needed.  Performing a stratigraphic coordinate transform is typically carried out 
prior to simulation.  This removes any curvilinear features in the stratigraphic layers, which 
simplifies variogram calculation and searching for conditioning data, see Figure 11.  Another 
aspect regarding stratigraphy is identifying layers that are geologically different.  Data from these 
layers may be considered different for kriging.  Faults can be used in a similar fashion for 
coordinate transformation.  Any topological changes that result from faulting are undone by the 
transform, see Figure 11. 

Generating unstructured grids prior to removing stratigraphic and fault features may result in cells 
that intersect layers and/or faults.  These blocks cannot be identified as belonging to a specific 
layer.  Upon being refined, some points may exist on opposite sides of a fault or of a stratigraphic 
surface.  Simulating and block averaging these points will likely result in undesirable outcomes. 

 
Figure 11: Transformations to remove stratigraphic and fault features. 

Another issue is simulation of categorical variables such as facies types.  For each block in a 
regular grid, kriging provides probabilities for each facies type.  These can be constructed into a 
cumulative distribution from which a facies type can be simulated.  For an unstructured grid this 
is not so straightforward.  For a set of refinement points in an unstructured cell, kriging and 
simulation will give the same information.  To assign a single facies type to the unstructured cell 
requires combining the facies probability distributions from each refinement point, then drawing 
a value.  Combining distributions is another component of future work.  Since simulation is 
carried out on refinement points only, each point in a cell must be assigned a simulated facies 
type.  For a particular cell, probability distributions at each of its refinement points must be saved 
during simulation until all points are simulated.  Depending on the random path through which 
points are visited as simulation progresses and the number of facies categories this would require 
more memory than a continuous variable. 

Other future work involves making improvements to cell refinement.  Some degenerate cases for 
determining if points are inside a non-convex solid exist.  These need to be understood and 
included in the usgsim program.  These problems may be contributing to the difference in runs 
between usgsim and sgsim identified in Figure 10.  One issue is that points are not evenly 
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distributed throughout a particular unstructured cell.  Ideally, we would like a set of refinement 
points to divide a cell into equal volumes.  This is a complex problem that would likely require 
too much time to execute for a large number of unstructured cells.  However, the current method 
should be improved to offer better refinement. 

Conclusions 

This work has shown that sequential Gaussian simulation can be performed on unstructured grids 
in a more elegant way than just block averaging a high resolution point scale regular grid.  
Results are correct to the accuracy of block discretization.  Depending on the unstructured grid 
definition, usgsim may perform faster than sgsim and block averaging.  This is true for grids with 
a high ratio of largest to smallest cell volume.  Sgsim is more demanding in terms of memory as 
well.  Validating models is a disadvantage for unstructured grids.  Histogram reproduction cannot 
be confirmed.  Variogram reproduction can become a time consuming exercise for large grids. 
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